

Oxo-nonafluoro diferrates (III)

Sukla Ghosh, A.K. Sengupta, B.B. Bhaumik *

Department of Chemistry, University of Kalyani, Kalyani-741235, West Bengal, India

Received 10 March 1995; accepted 30 September 1995

Abstract

The isolation and properties of novel oxofluoro-diiron (III) complexes, viz. $K_4HFe_2OF_9$, $Ba_5[Fe_2OF_9]_2 \cdot 2H_2O$, $[Co(NH_3)_6]_4H_3[Fe_2OF_9]_3 \cdot 2H_2O$ and $[Coen_3]_4H_3[Fe_2OF_9]_3 \cdot 8H_2O$ (en = ethylenediamine) are described.

Keywords: Oxo-nonafluoro diferrates preparation; Molar conductance; Magnetic moment; IR spectroscopy

1. Introduction

Some μ -oxochloro complexes containing the $[Fe_2O]^{4+}$ unit have been reported in the literature [1-3] but oxo-iron (III) complexes containing fluoride as ligand are unknown. We report here the preparation and properties of four oxodiiron (III) fluoro compounds.

2. Experimental details

For the preparation of $K_4HFe_2OF_9$, an aqueous solution (10 ml) of KHF_2 (0.022 mol) was warmed on a water bath and $FeC_2O_4 \cdot 2H_2O$ (0.011 mol) [4] added. To this mixture, H_2O_2 (10 ml) (100 volume) was added dropwise. When the vigorous reaction ceased, a yellowish green solution resulted and within a short time a white solid separated. After half an hour the precipitate was filtered, washed once with water and dried over conc. H_2SO_4 . Yield, 0.5 g [Analysis: Found: K, 34.11; Fe, 24.67; F, 37.8%. $K_4HFe_2OF_9$ requires: K, 34.21; Fe, 24.56; F, 37.50%].

 $Ba_5[Fe_2OF_9]_2 \cdot 2H_2O$ was obtained as a white gelatinous precipitate on adding barium chloride solution (5%) to a saturated aqueous solution of $K_4HFe_2OF_9$ (1.0 g) (pH ~ 5). The precipitate was centrifuged and the colourless mother liquor (pH ~ 2.8) decanted off. The residue was then washed several times with water and dried over conc. H_2SO_4 . Yield, 0.85 g [Analysis: Found: Ba, 52.62; Fe, 16.70; F, 25.70%. $Ba_5[Fe_2OF_9]_2 \cdot 2H_2O$ requires: Ba, 51.94; Fe, 16.96; F, 25.90%].

[Co(NH₃)₆]₄H₃ [Fe₂OF₉]₃·2H₂O and [Coen₃]₄H₃-[Fe₂OF₉]₃·8H₂O precipitated immediately as orange needle-shaped crystals on adding 5% aqueous [Co(NH₃)₆]Cl₃ and [Coen₃]₆Cl₃ solutions, respectively, to a saturated solution of the potassium salt. These were filtered, washed with water and dried in air. [Analysis: Found: N, 21.06; Fe, 21.12; F, 31.80%. [Co(NH₃)₆]₄H₃[Fe₂OF₉]₃·2H₂O requires: N, 21.26; Fe, 21.26; F, 32.46%. Found: N, 16.56; Fe, 16.94; F, 25.72%. [Coen]₄H₃[Fe₂OF₉]₃·8H₂O requires: N, 16.80; Fe, 16.80; F, 25.65%].

3. Results and discussion

The oxofluoro-diiron compounds are crystalline and non-hygroscopic. They are sparingly soluble in water. At room temperature, the solubility of $K_4HFe_2OF_9$ was found to be 11.8 g 1^{-1} . $K_4HFe_2OF_9$ could be recrystallised from water. The molar conductance value of its 10^{-3} molar solution was 545 Ω^{-1} at 26 °C, the value remaining unchanged even after a week. The barium salts and others on dehydration over P_2O_5 yielded the corresponding anhydrous compounds. Thermogravimetry showed that $K_4HFe_2OF_9$ was stable up to 40 °C and then decomposed gradually at higher temperature. The observed magnetic moment value μ_{BM} at 298 K was 9.56 for $K_4HFe_2OF_9$ corresponding to 4.78 BM for each Fe^{III} in the compound. The data indicate the high-spin nature of the complex. The IR data for $K_4HFe_2OF_9$ and $Ba_5[Fe_2OF_9]_2$ showed no band at ca. 1200 cm⁻¹ corresponding to $\nu(Fe-OH)$ [5,6].

It has been shown [2] that two FeOCl₃ tetrahedra are bridged via the oxygen atom in the complex anion [Fe₂OCl₆]²⁻. In [Fe₂OF₉]⁵⁻ ion each iron atom is probably

^{*} Corresponding author.

hexacoordinated in the following way, $[F_4 \ F_e]^{5-}$. Although evidence for $\nu(Fe-OH)$ has not been found in the IR spectra, in the potassium acid salt the H-atom is probably linked to oxygen a fluorine atom rather than to less electronegative oxygen atom.

Acknowledgement

The authors express their sincere thanks to the authorities of Kalyani University for providing facilities for one of them (S.G.).

References

- [1] W.H. Armstrong and S.J. Lippard, Inorg. Chem., 24 (1985) 981.
- [2] M.G.B. Drew, V. McKee and S.M. Nelson, J. Chem. Soc., Dalton Trans., (1978) 80.
- [3] P.G. Romero, G.C. DeFotis and G.B. Jameson, J. Am. Chem. Soc., 108 (1986) 851.
- [4] W.G. Palmer, Experimental Inorganic Chemistry, Cambridge University Press, Cambridge, UK, 1962, p. 519.
- [5] A.K. Sengupta and A.K. Nandi, Z. Anorg. Allg. Chem., 403 (1974) 327
- [6] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd. edn., Wiley-Interscience, New York, 1970, pp. 171, 202, 216.